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a b s t r a c t

A partial least-squares calibration (PLS) procedure in combination with infrared spectroscopy has been
developed for simultaneous determination of sulphamethoxazole (SMZ) and trimethoprim (TMP) in raw
material powder mixtures used for manufacturing commercial pharmaceutical products. Multivariate
calibration modeling procedures, interval partial least squares (iPLS) and synergy partial least squares
(siPLS), were applied to select a spectral range that provided the lowest prediction error in comparison
to the full-spectrum model. The experimental matrix was constructed using 49 synthetic samples and 15
commercial samples. The considered concentration ranges were 400–900 mg g−1 SMZ and 80–240 mg g−1

TMP. Spectral data were recorded between 650 and 4000 cm−1 with a 4 cm−1 resolution by Fourier trans-
form infrared spectroscopy coupled with attenuated total reflectance (ATR-FTIR) accessory. The proposed
procedure was compared with conventional procedure by high performance liquid chromatography
(HPLC) using 15 commercial samples containing SMZ and TMP. The results showed that PLS regression
model combined to ATR-FTIR is a relatively simple, rapid and accurate procedure that could be applied
to the simultaneous determination of SMZ and TMP in routine quality control of powder mixtures. A root
mean square error of prediction (RMSEP) of 13.18 mg g−1 for SMZ and 6.03 mg g−1 for TMP was obtained

after selection of better intervals by siPLS. Using the proposed procedure it is possible to analyze each

consi
etho

1

b
i
t
r
t
t
(
a
O
t
s

c

0
d

sample in less than 3 min
by comparison to HPLC m

. Introduction

Sulphonamides are one of the oldest groups of antimicro-
ial compounds. Sulphamethoxazole [4-amino-N-(5-methyl-3-

soxazolyl)-benzenesulphonamide] and trimethoprim [5-(3,4,5-
rimethoxybenzyl) pyrimidine-2,4-diyldiamine] have been cur-
ently used combined in a single pharmaceutical product to
reat infections such as bronchitis, middle ear infection, urinary
ract infection, and traveler’s diarrhea [1]. Sulphamethoxazole
SMZ), a sulphonamide with a structure similar to p-aminobenzoic
cid, inhibits p-aminobenzoic acid incorporation into folic acid.
n the other hand, trimethoprim (TMP) prevents dihydrofolate
o tetrahydrofolate reduction, which is essential bacterial DNA
ynthesis [2,3].

Several methods for SMZ and TMP determination in pharma-
eutical preparations have been reported. Quantification of these

∗ Corresponding author. Tel.: +55 55 3220 9445; fax: +55 55 3220 9445.
E-mail address: flores@quimica.ufsm.br (E.M.M. Flores).
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dering two replicates (excluding the grinding step). Accuracy was checked
d and agreement better than 98.8% was achieved.

© 2009 Elsevier B.V. All rights reserved.

substances has been described using simple spectrophotometric
method based on red-colored product formation by diazotization of
sulphonamides [4], flow injection systems [5–7], high-performance
micellar liquid chromatography [8], high performance liquid chro-
matography (HPLC) [9], second derivative spectrophotometry [10],
adsorptive stripping voltammetry [11], bivariate calibration [12]
and chemometrics methods [13,14]. Also, a quantitative diffuse
reflectance near infrared method was investigated to determine
SMZ polymorphs in binary and multi-component powder mixtures
[15]. Pharmacopoeial methods list HPLC as the official assay proce-
dure for quality control in pharmaceutical preparations [16].

Analytical methodologies with high throughput should be con-
sidered in the analysis of drugs in pharmaceutical industries,
particularly in monitoring processes area, allowing measurements
in real time. Also, the search for free-solvent methods becomes

essential because the environmental impact and large daily toxic
waste produced by pharmaceutical industries. Infrared spec-
troscopy method has these characteristics, as mentioned above.
Moreover, the use of infrared spectroscopy eliminates the stage of
sample preparation [17].

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:flores@quimica.ufsm.br
dx.doi.org/10.1016/j.jpba.2008.12.011
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Spectroscopy procedures involving NIR has received increas-
ngly wider applications in analysis of different products [18–26].
owever, MIR has been a technique relatively still little explored

n pharmaceutical analysis [27–30]. Moreover, Fourier transformed
nfrared spectroscopy (FTIR) analysis provides faster (when com-
ared with HPLC) and interesting quantitative information [31–33].

f this technique is coupled with an attenuated total reflectance
ATR) accessory some of the sample handing problems commonly
ssociated with infrared analysis can be simplified. This accessory
as been currently used to routine quality control applications and
ulk polymorphs pharmaceutical materials quantitative analysis
28]. Multivariate calibration has been described as the most suc-
essful application in chemometrics and spectral data combination
34]. In addition, partial least square (PLS) regression is the most
opular multivariate calibration technique to build prediction mod-
ls using spectroscopic signals [34–36]. Recent applications had
een published showing that spectral region selection using suit-
ble algorithms can significantly improve the performance of these
ull-spectrum calibration techniques [37–39]. In this case, specific
egions are selected generating models with lower prediction error.
n practice, multivariate regression models optimization is based
n the identification of a complete data subset that will produce
he lowest prediction error. An optimized region can be found by
educing or increasing it by subtracting or adding new variables.
ne of the main advantages of this method is the possibility to

epresent a regression model in a graphical display, focusing on
he better intervals choice and allowing a comparison among inter-
al models and the full-spectrum model [40]. Interval partial least
quares (iPLS) allows the building of models with spectral interval
nd root mean squared error of cross-validation (RMSECV) values
an be used as the criterion to evaluate the prediction ability of
his interval [47]. However, the exclusion of intervals with higher
MSECV values would loose useful information. This way, advanced
odels as synergy partial least squares (siPLS) could be applied to

nd favorable intervals combinations for calibration [45].
As an alternative to official methods, the main objective of this

ork was to investigate the feasibility of ATR-FTIR spectroscopy
ssociated to iPLS and siPLS algorithms for the obtained regression
odels. These models were used as the multivariate linear calibra-

ion methods to predicting SMZ and TMP amount in tablets. Partial
east square was employed to data modeling using full spectra infor-

ation, while iPLS and siPLS were used to select variable intervals.
he results by the proposed method were compared with those by
sing recommended procedures in official pharmacopoeias.

. Materials and methods

.1. Materials and sample preparation

Sulphamethoxazole and trimethoprim certified reference mate-
ials were acquired from Brazilian Pharmacopoeia (batches 1010
nd 1011 for SMZ and TMP, respectively). Methanol, acetoni-
rile and triethylamine were HPLC grade. Forty-nine formulations
synthetic samples) containing SMZ (400–900 mg g−1 range), TMP
80–240 mg g−1 range) and diluents starch and magnesium stearate
99:1) were prepared in laboratory. Sulphamethoxazole (batch
2960805) and trimethoprim (batch 200504246) bulk drugs were
urchased from Henrifarma (Sao Paulo, Brazil) and used for
ynthetic samples preparation. Fifteen commercial tablets formu-
ations from nine manufactures (named commercial samples) were

cquired in local drugstores. Calibration set was constructed with
2 synthetic samples and 9 commercial samples and the prediction
et was constructed using 17 synthetic samples and 6 commercial
amples. Synthetic and commercial samples were prepared by pow-
er mixing in a cryogenic mill Spex Certiprep (model 6750 Freezer
Biomedical Analysis 49 (2009) 800–805 801

Mill, Metuchen, EUA). A time period of 2 min was enough to mixing
each samples, that was ground up to particle size less than 80 �m.

2.2. Apparatus and software

All spectra were recorded from 4000 to 650 cm−1 using a
PerkinElmer Model Spectrum One FTIR spectrometer with 16 scans
and 4 cm−1. This instrument is equipped with a universal ATR sam-
pling accessory supplied with a top plate ZnSe crystal. For ATR data
acquisition, 35.0 ± 0.3 mg of solid sample was placed onto the crys-
tal and its spectrum was recorded. Data were handling using Matlab
software 6.1 version (The Math Works, Natick, USA). For PLS multi-
variate calibration models, the “PLS Toolbox” 2.0 version was used
(Eigenvector Technologies, Manson, USA). The iToolbox for Matlab
(http://www.models.kvl.dk, USA) was used to variables selection
and develop multivariate models [41]. Software program was run
on an IBM-compatible Intel Pentium 4 CPU 3 GHz and 1 Gbytes RAM
microcomputer. For evaluation of the models generated from iPLS
and siPLS algorithms, the spectral band was divided in 10, 25 and 50
intervals. The spectra of samples were preprocessed by multiplica-
tive scatter correction (MSC), autoscalling (A) and mean centering
(MC). A statistical F-test (˛ = 0.5%) was introduced in order to show
if there was significant difference between prediction errors of con-
structed models.

2.3. HPLC reference method

Determination of SMZ and TMP content was carried out
using high performance liquid chromatography (HPLC) procedure
according to the method described in the United States Pharma-
copoeia, USP 30 [16]. This procedure was chosen as reference
and it was performed with a HPLC system consisting of Agi-
lent 1100 Series system equipped with pump (model G1311A),
detector (model G1315B DAD) and automatic sampling system
(model G133A ALS). Detector was set at 254 nm and peak areas
were integrated automatically using a Chemstation® software
program (Agilent Technologies Inc., CA, USA). Separation was car-
ried out at ambient temperature using a Zorbax® SBC-18 column
(250 mm × 4.5 mm i.d., 5 �m particle size). A Zorbax® SBC-18
column (12.5 mm × 4.5 mm i.d., 5 �m particle size) guard car-
tridge system was used to safeguard the analytical column. The
mobile phase was a mixture of water:acetonitrile:triethylamine
(1400:400:2, v/v/v). The pH was adjusted for 5.9 and the volume
was completed with distillated water. Commercial tablets were
finely powdered and mixed. A mass corresponding to 160 mg of
sulphamethoxazole and 32 mg trimethoprim for each formulation
was accurately weighed and dissolved in 100 mL of methanol. Dis-
solution was carried out with aid of an ultrasonic bath (15 min)
An aliquot of 5 mL of each sample was added to 50 mL volumet-
ric flasks and mobile phase was used to complete the volume. All
these determinations were performed in triplicate for synthetic and
commercial samples.

2.4. Chemometrics models

Multivariate chemometrics methods were applied to obtain
quantitative information from the measurements. Partial least
square regression was applied to ATR-FTIR data to built calibration
models enabling prediction of SMZ and TMP amount in pharma-

ceutical preparations. The root mean square error (RMSE) was
calculated according to the following equation [42]:

RMSE =
√∑n

i=1(yi − ŷi)
2

n
(1)

http://www.models.kvl.dk/
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Table 1
Statistical results to SMZ better calibration models and SMZ full-spectrum PLS
model.

Model VNa Intervals LVb RMSECV, SMZ
(mg g−1)

R2
cal

RMSEP, SMZ
(mg g−1)

PLS 3351 All 6 34.75 0.978 22.29
iPLS10 335 10 3 40.15 0.947 35.49
iPLS25 135 22 4 49.05 0.932 37.12
iPLS50 68 49 6 33.20 0.976 31.24
siPLS10 670 1 and 10 6 30.05 0.981 22.06
siPLS10 1005 1, 2 and 3 7 26.32 0.988 26.42
siPLS10 1340 1, 2, 3 and 4 8 23.34 0.991 23.46
siPLS10 1675 1, 2, 3, 4 and 5 9 24.46 0.992 22.86
siPLS25 270 9 and 23 9 21.52 0.996 13.18
siPLS25 405 6, 9 and 23 8 23.35 0.995 16.25
siPLS50 136 39 and 49 6 19.52 0.993 18.09

obtained for developed models after iPLS algorithm application (F-
test, ˛ = 0.5). It is possible that information was spread on the whole
spectral range and a variable selection per interval could automat-
ically reduce the information and induce an increase of RMSEP
compared with full-spectrum PLS [40].

Table 2
Statistical results to TMP better calibration models and TMP full-spectrum PLS
model.

Model VNa Intervals LVb RMSECV, TMP
(mg g−1)

R2
cal

RMSEP, TMP
(mg g−1)

PLS 3351 All 4 13.51 0.938 7.86
iPLS10 335 3 3 14.60 0.912 10.82
iPLS25 135 19 9 13.08 0.953 15.84
iPLS50 68 49 5 17.40 0.936 10.82
siPLS10 670 2 and 10 7 12.51 0.961 6.80
siPLS10 1005 3,7 and 9 4 12.68 0.938 8.2
siPLS10 1340 1, 2, 3 and 10 4 12.40 0.943 9.07
02 F.E.B. Silva et al. / Journal of Pharmaceutic

here ŷi is the predicted value for test set sample i, yi the reference
alue for test set sample i and n is the number of observation in
esting set.

Root mean squares error of cross-validation was used to evalu-
te the error of the proposed calibration models and to select the
umber of latent variables. Root mean square error of calibration
RMSEC) and root mean square error of prediction (RMSEP) were
sed to evaluate the prediction ability between different PLS mod-
ls. Performance of the obtained calibration models was checked
hrough relative standard error of prediction (RSEP) as calculated
rom the following equation [43]:

SEP =

√∑n
i=1(yi − ŷi)

2∑n
i=1(yi)

2
× 100 (2)

here ŷi is the predicted value for test set sample i, yi the reference
alue for test set sample i.

The systematic error (“bias”) and the standard deviation of val-
dation (SDV) were calculated from Eqs. (3) and (4), respectively:

ias =
∑n

i=1(yi − �yi)

n
(3)

DV =
√∑n

i=1[(yi − �yi) − bias]2

n − 1
(4)

Thereafter, the t-test was applied, conformed the following
quation [46]:

sist =
∣∣bias

∣∣√
n

SDV
(5)

The systematic error was considered not significant for the tsist
alues lower than critical value (tc)� = 0.5% and n − 1 d.f.

The iPLS models were built on spectra division into 10, 25
nd 50 intervals. The iPLS routine generates graphical information
ndicating the optimum number of latent variables used in each
nterval model and RMSECV values. In this case, the subinterval
han presented the minor RMSECV values was selected. Synergy
LS models were constructed with spectra set divided into 10,
5 and 50 intervals and combinations from 2 to 5 intervals. The
ombined subintervals than presented the minor RMSECV values
ere selected. The results obtained by the proposed method were

ompared with reference method (using HPLC) by t-test paired
˛ = 0.5%). The results obtained by ATR-FTIR were also in agree-

ent to the interval allowed by Brazilian Pharmacopoeia (93–107%
eclared value).

. Results and discussion

.1. Preprocessing choice

MSC preprocessing showed the lower RMSEP and RMSECV val-
es (F-test, ˛ = 0.5%). For the A and MC preprocessing no significant
ifference was observed among RMSEP values. The A preprocessing
ool was chosen in view of lower RMSEP value.

.2. Full-spectrum PLS model

Initially, in order to have a measurement of the variable selection
lgorithms quality, models were built using ATR-FTIR full-spectrum

nformation. Full-spectrum PLS models were obtained with six and
our latent variables for SMZ and TMP, respectively, and results are
hown in Tables 1 and 2. Accuracy was calculated for the proposed
TR-FTIR method and it reports the agreement between the refer-
nce value by HPLC and the value found by the calibration model
in this case evaluated by RMSEP value).
siPLS50 204 11, 23 and 49 7 15.75 0.995 19.28

a VN: total variables numbers.
b LV: latent variables.

3.3. Sulphamethoxazole iPLS models

Interval PLS algorithm principle is to split the spectra into
smaller equidistant regions and develop models for each subin-
terval. Thereafter, the subintervals RMSECV are compared with
full-spectrum RMSECV values. This algorithm allows the compari-
son among intervals model and the full-spectrum model. Interval
PLS plots (and latent variables used for each constructed model, rep-
resented by numbers above interval number), RMSECV values for
each interval selected and the RMSECV values for the full-spectrum
model (dotted line) using six latent variables are demonstrated in
Fig. 1. It is possible to observe that the developed model using
interval number 22 to iPLS with 25 intervals produces the minor
RMSECV values (when compared with the others 24 intervals) but
does not produce better results than the value of full-spectrum PLS
model. Therefore, the iPLS models using the spectrum subdivided
in 50 intervals were developed. Table 1 shows the statistical indi-
cators to better SMZ iPLS calibrations models developed with 10,
25 and 50 intervals. The developed model using the interval 49 for
iPLS with 50 intervals produced better results according to lower
results for RMSECV values (using 6 latent variables and only 68 total
variables numbers). To evaluate the prediction ability of developed
models in relation to full model the RMSEP values were compared.
The RMSEP value for the full-spectrum model was lower than those
siPLS10 1675 1, 2, 3, 9 and 10 4 12.24 0.943 7.83
siPLS25 270 14 and 25 11 10.01 0.994 9.47
siPLS25 405 7, 19 and 23 9 9.25 0.985 8.28
siPLS50 136 34 and 49 4 8.75 0.975 7.08
siPLS50 204 14, 39 and 49 6 8.17 0.983 6.03

a VN: total variables numbers.
b VL: latent variables.
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Fig. 1. Cross-validated prediction errors (RMSECV) values to full-spectrum model
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nd interval models (bars) to SMZ determination using PLS and iPLS algorithms
dotted line and numbers above interval numbers refer to full-spectrum RMSECV
nd latent variables using in each model, respectively).

.4. Sulphamethoxazole siPLS model

The siPLS algorithm principle is to split the data set into a num-
er of intervals (variable-wise) and to calculate all possible PLS
odel combinations of two, three or more intervals. Thereafter,

he combined subinterval RMSECV is compared with full-spectrum
MSECV values. For the developed PLS models using spectra full

nformation, the including uninformative wavenumbers could neg-
tively affect the calibration by producing both large relative bias.

n this case, a judicious selection of spectral regions would improve
he predictive ability of the PLS model [37]. Therefore, variables
election by siPLS was implemented to verify if the combination of
ore than one interval would result in models with better predic-

able 3
verage prediction results to selected models by siPLS algorithm.

amples SMZ

Reference HPLC method (mg g−1) ATR-FTIR method (mg

a 503.59 507.20
a 503.59 498.19
a 654.67 644.16
a 654.67 641.54
a 654.67 652.47
a 755.38 752.44
a 755.38 757.02
a 755.38 762.81
a 830.92 836.43
0a 830.92 841.74
1a 830.92 821.58
2a 881.28 871.36
3b 698.12 704.88
4b 655.30 677.53
5b 722.95 743.29
6b 819.79 785.98
7b 820.66 826.37
8b 820.88 811.28
9a 503.59 497.70
0a 654.67 624.57
1a 755.38 746.55
2a 755.38 750.12
3a 881.28 880.74

MSEP (mg g−1) – 13.18
SEP (%) – 1.79

a Synthetic samples.
b Commercial samples.
Fig. 2. Reference HPLC values versus predicted SMZ values for siPLS model, using
intervals 9 and 23 and 9 latent variables.

tive capacity. The spectrum was divided in 10, 25 or 50 intervals
combined in up to 5 subintervals. The spectrum divided in 10 inter-
vals was combined in up to 5 subintervals and the spectrum divided
in 25 and 50 intervals was combined in up to 3 intervals. Table 1
shows the statistical indicator to SMZ siPLS better calibration mod-
els.

Models obtained by spectra division in 10 intervals showed pre-
dictive capacity similar to the full-spectrum model (model siPLS 10
with intervals numbers 1, 2, 3, 4 and 5). All models using the spec-
trum subdivided in 25 and 50 intervals, after the variable selection
by siPLS, showed lower RMSEP values (F-test, ˛ = 0.5). The minor
RMSEP for siPLS was obtained when the spectra set was split in 25
intervals and the intervals number 9 and 23 had been combined.
For this siPLS model, results showed good correlation between ref-
erence and predicted values indicated by a correlation coefficient
of 0.996, as shown in Fig. 2. The selected intervals included the

regions of 2794–2928 cm−1 (interval 9) and 918–1052 cm−1 (inter-
val 23) that corresponds to CH3 and S–N stretching vibrations
[44], respectively. These groups are constituents of SMZ chemi-
cal structure. In a general way, the combination of intervals 9 and

TMP

g−1) Reference HPLC method (mg g−1) ATR-FTIR method (mg g−1)

175.73 169.99
220.91 217.80
100.41 93.37
150.62 159.36
220.91 222.82
100.41 101.08
175.72 181.46
220.91 233.02
100.41 95.66
125.52 123.70
175.72 181.70
125.52 119.89
145.10 135.51
129.00 133.64
141.83 138.71
155.44 144.41
156.23 160.23
155.60 152.63
125.52 123.16
175.72 183.65
125.52 126.30
150.62 157.76
100.41 101.02

– 6.03
– 3.90
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ig. 3. Cross-validated prediction errors (RMSECV) values to full-spectrum model
nd interval models (bars) to TMP determination using PLS and iPLS algorithms
dotted line and numbers above interval numbers refer to full-spectrum RMSECV
nd latent variables using in each model, respectively).

3 by siPLS algorithm reduced RMSECV and RMSEP values. There-
ore, it was possible to find a narrow region to SMZ determination
ith small prediction errors and reduced variable numbers (270

ariables compared with 3351 used in the full-spectrum model).
nterval 6 inclusion (model siPLS25 with interval numbers 6, 9 and
3) does not modify significantly the quality of model. This inter-
al can refer on a spectral region that does not contain relevant
nformation. Average prediction results and RMSEP to the selected
iPLS calibration models are shown in Table 3. Synergy PLS model
eveloped using intervals 9 and 23 resulted in low relative standard
rror of prediction (RSEP = 1.79%), suggesting that the method used
s accurate as also described in Table 3. The systematic error pro-
ided by model was not significant (bias = 2.75 and tsist < tcrit) due
o the non-tendency for the prediction errors.

.5. Trimethoprim iPLS models

Fig. 3 shows the central iPLS plots, the RMSECV values for each
nterval selected (bars) and the RMSECV values to full-spectrum

odel (dotted line) using four latent variables. Table 2 shows the
tatistical indicator to TMP iPLS calibrations models using the spec-
rum subdivided in 10, 25 and 50 intervals. The developed model
sing interval 19 for iPLS with 25 intervals produced the minor
MSECV values (when compared with the others 24 intervals) but
ot the significant minor RMSEP values than the full-spectrum PLS
odel (F-test, ˛ = 0.5). As in the previous case, an increase of RMSEP

an be attributed to the limited information generated by the selec-
ion of spectrum specific regions [40].

.6. Trimethoprim siPLS models

The algorithm siPLS was implemented using the spectrum sub-
ivided in 10, 25 or 50 intervals combined in up to 5 subintervals.
able 2 shows the statistical indicators to TMP siPLS calibration
odels. With exception of siPLS10 model (with 4 intervals) and

iPLS25 model (with 2 intervals), the other models not provided
ignificant difference in RMSEP values (F-test, ˛ = 0.5). The siPLS10

odel (with intervals numbers 1, 2, 3 and 10) showed higher RMSEP

alue when compared with full-spectrum model. However, with
he addition of interval number 9 (siPLS10 model with intervals
umbers 1, 2, 3, 9 and 10) the RMSEP value was reduced. The
iPLS10 model (with 5 intervals) showed RMSEP equivalent to the
Fig. 4. Reference HPLC values versus predicted TMP values for siPLS model using 14,
39 and 49 intervals and 6 latent variables.

full-spectrum model. The additional interval (interval 9) could be
due to spectral region that does contain relevant information.

The minor RMSEP value was obtained when the spectrum was
split in 50 intervals and the intervals 14, 39 and 49 were combined.
For this siPLS model, the results showed a good correlation between
reference and predicted values, indicated by a correlation coeffi-
cient of 0.983, as shown in Fig. 4. The selected intervals included
the regions of 3064–3130 cm−1 (interval 14) and 1389–1455 cm−1

(interval 39). Both intervals include C–H, C–C and C–N stretch-
ing vibrations of the pyrimidine ring presented in structure of TMP
and the interval 49 (717–784 cm−1) corresponds to out-of-plane
N–H bending vibration [44]. The siPLS model combined the inter-
vals 14, 39 and 49 allowing better predictive ability when compared
with iPLS models and full-spectrum PLS model. Therefore, it was
possible to find a narrow region for TMP determination with small
prediction errors and reduced variable numbers. Average predic-
tion results, RMSEP and RSEP for the selected siPLS calibration
model are shown in Table 3. This synergy PLS model combining
three intervals resulted in low prediction errors (RSEP = 3.90%). The
systematic error provided by model was not significant (bias = −0.13
and tsist < tcrit), showing that the prediction errors have not ten-
dency.

3.7. Comparison of PLS, iPLS and siPLS models

Comparing the results from PLS, iPLS and siPLS models in deter-
mination of pharmaceuticals by FTIR-ATR, siPLS models showed
better predictive capacity (lower RMSEP). This result could be
explained by three reasons: (1) PLS models included noisy spectral
information; (2) iPLS models can reduce noise by selecting spe-
cific spectral regions, however useful spectral information can be
lost; (3) with intervals combination performed by siPLS is possible
to obtain models with reduced total variables numbers (removing
noisy spectral) and better predictive capacity (without information
loosing).

4. Conclusions

Using the PLS regression algorithm combined with ATR-FTIR
data it was possible to develop multivariate models for simultane-
ous determination of SMZ and TMP in commercial pharmaceutical
products. Assay results, expressed as the percentage of the label
claim were found to be 95–103% for SMZ and 93–105% for TMP.

These results were in agreement to the content of SMZ and TMP in
powder mixtures according to the USP 30 requirements (93–107%)
for the solid preparations. The variable selection techniques used in
this work produced models with better predictive ability compared
to full-spectrum PLS models. The siPLS algorithm demonstrated to
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[7] D. Tomšů, M. Catalá Icardo, J. Martinez Calatayud, J. Pharm. Biomed. Anal. 36
(2004) 549–557.

[8] M.C. Garcia-Alvarez-Coque, E.F. Simo-Alfonso, G. Ramis-Ramos, J.S. Esteve
Romero, J. Pharm. Biomed. Anal. 13 (1995) 237–245.

[9] C. Akay, S.A. Ozkan, J. Pharm. Biomed. Anal. 30 (2002) 1207–1213.
10] G. Granero, C. Garnero, M. Longhi, J. Pharm. Biomed. Anal. 29 (2002) 51–

59.
11] H.M. Carapuça, D.J. Cabral, L.S. Rocha, J. Pharm. Biomed. Anal. 38 (2005)

364–369.
12] L. López-Martínez, P.L. López-de-Alba, L.M. de-León-Rodríguez, M.L. Yepez-

Murrieta, J. Pharm. Biomed. Anal. 30 (2002) 77–85.
13] C.K. Markopoulou, E.T. Malliou, J.E. Koundourellis, Il Farmaco 59 (2004) 627–

636.

14] Y. Ni, Z. Qi, S. Kokot, Chem. Intell. Lab. Syst. 82 (2006) 241–247.
15] A.D. Patel, P.E. Luner, M.S. Kemper, Int. J. Pharm. 206 (2000) 63–74.
16] United States Pharmacopoeial Convention, USP 30 – NF 25, United States Phar-

macopoeial Convention, Rockville, MD, 2007.
17] M.F. Ferrão, C.U. Davanzo, Anal. Chim. Acta 540 (2005) 411–415.
18] W. Li, G.D. Worosila, Int. J. Pharm. 295 (2005) 213–219.

[
[

[

Biomedical Analysis 49 (2009) 800–805 805

19] W. Li, M.C. Johnson, R. Bruce, S. Ulrich, H. Rasmussen, G.D. Worosila, Int. J. Pharm.
326 (2006) 182–185.

20] C.M. McGoverin, L.C.H. Ho, J.A. Zeitler, C.J. Strachan, K.C. Gordon, T. Rades, Vibr.
Spec. 41 (2006) 225–231.

21] C. Bodson, W. Dewe, Ph. Hubert, L. Delattre, J. Pharm. Biomed. Anal. 41 (2006)
783–790.

22] Y.C. Feng, C.Q. Hu, J. Pharm. Biomed. Anal. 41 (2006) 373–384.
23] M. Blanco, M. Alcalá, Eur. J. Pharm. Sci. 27 (2006) 280–286.
24] M. Blanco, M. Castillo, A. Peinado, R. Beneyto, Anal. Chim. Acta 581 (2007)

318–323.
25] J.W.B. Braga, R.J. Poppi, Quim. Nova 27 (2004) 1004–1011.
26] A.R. Caneca, M.F. Pimentel, R.K.H. Galvão, C.E. Matta, F.R. Carvalho, I.M.

Raimundo, C. Pasquini, J.J.R. Rohweder, Talanta 70 (2006) 344–352.
27] C. Boyer, B. Bregere, S. Crouchet, K. Gaudin, J.P. Dubost, J. Pharm. Biomed. Anal.

40 (2006) 433–437.
28] K. Lundstedt-Enkel, J. Gabrielsson, H. Olsman, E. Seifert, J. Pettersen, P.M. Lek,

A. Boman, T. Lundstedt, Chemom. Intell. Lab. Syst. 84 (2006) 201–207.
29] A. Salari, R.E. Young, Int. J. Pharm. 163 (1998) 157–166.
30] S. Armenta, S. Guarrigues, M. de La Guardia, P. Rondeau, Anal. Chim. Acta 545

(2005) 99–106.
31] S.C. Godoy, M.F. Ferrão, A.E. Gerbase, J. Am. Oil Chem. Soc. 84 (2007)

503–508.
32] M.A. Morgano, C.G. Faria, M.F. Ferrão, M.M.C. Ferreira, Quim. Nova 30 (2007)

852–859.
33] M.F. Ferrão, S.C. Godoy, A.E. Gerbase, C. Mello, J.C. Furtado, C.L. Petzhold, R.J.

Poppi, Anal. Chim. Acta 595 (2007) 114–119.
34] R.G. Brereton, Analyst 125 (2000) 2125–2154.
35] P. Geladi, B.R. Kowalski, Anal. Chim. Acta 185 (1986) 1–17.
36] P. Geladi, Spectrochim, Acta Part B 58 (2003) 767–782.
37] C.H. Spiegelman, M.J. McShane, G.L. Coté, M.J. Goetz, M. Motamedi, Q.L. Yue,

Anal. Chem. 70 (1998) 35–44.
38] L. Nørgaard, M.T. Hahn, L.B. Knudsen, I.A. Farhat, S.B. Engelsen, Int. Dairy J. 15

(2005) 1261–1270.
39] A. Borin, R.J. Poppi, Vibr. Spec. 37 (2005) 27–32.
40] L.C.M. Pataca, W.B. Neto, M.C. Marcucci, R.J. Poppi, Talanta 71 (2007)

1926–1931.
41] L. Norgaard, A. Saudland, J. Wagner, J.P. Nielsen, L. Munck, S.B. Engelsen, Appl.

Spectrosc. 54 (2000) 413–419.
42] R.G. Brereton, Chemometrics Data Analysis for the Laboratory and Chemical

Plant, John Wiley & Sons, Chichester, 2003.
43] M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, J. Pagès, Anal. Chim. Acta 384 (1999)

207–214.
44] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spec-

troscopy, third ed., Academic Press, London, 1990.

45] Q. Chen, J. Zhao, M. Liu, J. Cai, J. Liu, J. Pharm. Biomed. Anal. 46 (2008) 568–573.
46] The American Society for Testing and Material (ASTM) Practice E1655-05, ASTM

Annual Book of Standards, vol. 03.06, ASTM International, West Conshohocken,
USA, 2005.

47] A.F.C. Pereira, M.J.C. Pontes, F.F.G. Neto, S.R.B. Santos, R.K.H. Galvão, M.C.U.
Araújo, Food Res. Int. 41 (2008) 341–348.


	Simultaneous determination of sulphamethoxazole and trimethoprim in powder mixtures by attenuated total reflection-Fourier transform infraredpenalty -@M and multivariate calibration
	Introduction
	Materials and methods
	Materials and sample preparation
	Apparatus and software
	HPLC reference method
	Chemometrics models

	Results and discussion
	Preprocessing choice
	Full-spectrum PLS model
	Sulphamethoxazole iPLS models
	Sulphamethoxazole siPLS model
	Trimethoprim iPLS models
	Trimethoprim siPLS models
	Comparison of PLS, iPLS and siPLS models

	Conclusions
	Acknowledgements
	References


